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Drag on a sphere in unsteady motion in a liquid at rest 
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A sphere was subjected to a simple harmonic motion in an otherwise undisturbed 
liquid. Records of the resistance of the liquid to the motion for various amplitudes and 
frequencies were obtained. The resistance was first represented by an equation 
consisting of three terms with empirical coefficients: the steady-motion drag, a term 
due to the ‘added mass’ and a term due to the history of the motion. It was found that 
the data could be correlated only with a large degree of scatter by this type of equation. 
Subsequently an attempt was made to represent the resistance by means of a single 
term, with an empirical coefficient C. It was found that C correlated well with the 
acceleration number V d / V 2  and the Reynolds number V d l v ,  where E V and d are 
the acceleration, velocity and diameter of the sphere respectively and v is the kine- 
matic viscosity of the liquid. C increased with V d / V 2  and decreased in the limit to 
the steady-motion drag coefficient C, when V d / V 2  became very small. The range of 
the Reynolds number in the experiments was lo2 < V d / v  < lo4 and the range of the 
acceleration number was 0 6 P d / V 2  < 10.5. 

1. Introduction 
The drag on bodies, mainly spheres, in unsteady motion in fluids has been the 

subject of few theoretical but many experimental investigations. Early work on this 
subject was almost always connected with the motion of pendulums in fluids, with the 
object of finding the correct period of the pendulums. 

Stokes (1851) showed theoretically that for a sphere oscillating linearly with small 
amplitude in a fluid the resistance F would be 

F = 3nvpfd[ l  + (pd2 /8v ) ) ]  V + & m ’ [ l  +$(8v/pd2)’f]  V ,  (1)  

where pf is the density of the fluid, p is the angular frequency of the oscillations and 
m’ is the mass of the fluid displaced by the sphere, so that for an inviscid fluid the 
resistance would reduce to & m ’ t  the resistance due to the ‘added mass’, as deduced 
theoretically by Poisson (1832). 

The next theoretical work in this field was done by Boussinesq (1885) and Basset 
(1888), who showed that for unsteady slow motion of a sphere in a fluid the solution 
of the Navier-Stokes equations gives 

F = 3nvpf d V + im’V+ G p f ( n ~ ) ’ f  7 

where 0 < 7 < t and f (t -7) = V at the dummy time t -r. The first term is the steady- 
motion drag, the second term is due to  the ‘added mass’ and the third term is due to 
the history of the motion. It can be shown that substitution of a simple harmonic 
motion into ( 2 )  reduces it to (1). 
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The rest and the bulk of the work in this field has been experimental. Several of 
the investigators, including DuBuat (1786), Krishnaiyar ' (1923), Carstens (1952) 
and garpkaya (1975), confined themselves to the determination of the added-mass 
coefficient for spheres oscillating in liquids. 

An elaborate experimental study was carried out by Odar & Hamilton (1964), who 
modified the Boussinesq-Basset expression by introducing empirical coefficients into 
all three terms. They measured the added-mass and the history coefficients for a 
sphere oscillating with finite amplitude in a viscous liquid. They found both coefficients 
to be functions of the non-dimensional quantity V 2 / (  T'd) only. However, the Reynolds 
number in their experiments did not exceed 62. Later, Hamilton & Lindell (1971) 
showed that for spheres falling under gravity the added-mass coefficient was almost 
always very nearly equal to the theoretical value of 0.5 for Reynolds numbers of up 
to 35000. However, they assumed initially that the history coefficient was equal to 
its theoretical value of 6, and did not investigate the effect of acceleration on the 
added-mass coefficient. 

Luneau (1948), Batailler (1956) and McNown & Keulegan (1959) attempted to 
show experimentally that the added mass could be explained physically by the wake 
of the body being accelerated with it. More recently, Schoneborn (1975) showed experi- 
mentally that in an oscillatory flow the drag predicted by the empirical equation 
formulated by Odar & Hamilton was too low when the frequency of the flow field was 
in the region of the natural frequency of vortex shedding. The dependence of the 
flow around the sphere and hence the drag on the frequency of oscillation of the flow 
field had been anticipated in theoretical papers by Lighthill (1 954) and Houghton 
(1 963). 

In  a different approach, Lunnon (1926) expressed the fluid resistance to a sphere in 
unsteady motion by a different relationship, derived by dimensional analysis, namely 

F = pr V2d2gl( V ~ / V ,  I'd/ 7'). (3) 

He could not verify this relationship, but by plotting F / (  V2d2) against Vd he obtained 
lines of constant T' from data he had obtained from freely falling spheres. 

Iverson & Balent (1  951), in experiments on disks moving inviscous fluids, Bugliarello 
(1956), in experiments on spheres falling in water, and Keim (1956), in experiments 
on cylinders rising in water, showed that the concept of a total resistance coefficient 
C given by 

C = g,{ Vd/v, T'd/ V 2 ,  [ V / ( g d ) ] t ,  geometry of the body} 

was more practical and gave a better correlation than the added-mass coefficient. 
Despite the large amount of experimental work carried out up to  now on unsteady 

motion of spherical bodies, the results available are deficient in some aspects. Most 
of the workers did not consider the history term. Those that did assumed the theoretical 
value given by the Boussinesq-Basset expression to apply. Accordingly, they measured 
the added-mass coefficient only. The results obtained by Odar & Hamilton, who 
measured both the added-mass and the history coefficient, were, as mentioned, for 
Reynolds numbers up to 62 only. It appearsfrom their results that at suchlow Reynolds 
numbers the two coefficients are dependent on the acceleration number only. Buglia- 
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rello's results had a lot of scatter, so that no clear conclusion could be made. It waa 
for these reasons that the present study was undertaken, with the aim of obtaining 
more conclusive results at relatively high Reynolds numbers. 

2. Apparatus and experimental technique 
The purpose of the apparatus was to subject a sphere, fully submerged in a liquid, 

t o  simple harmonic motion of different amplitudes and frequencies and to provide a 
simultaneous record of both the motion of the sphere and the liquid's resistance to it. 
Simple harmonic motion was chosen as a convenient method of subjecting the sphere 
to an unsteady motion. 

The apparatus is shown in figure 1.  The simple harmonic motion was produced by 
a horizontal bar ( 1 )  pivoted on two disks rotating together a t  the same speed and in 
the same direction. A synchronous motor (6) drove one of the disks through a gear 
arrangement (7) connected to the disk by a flexible shaft (8). The purpose of the flexible 
shaft was to isolate the measuring system from the vibrations produced by the motor. 
The two disks rotated together as they were connected by a positive drive belt. A 
hollow Perspex sphere 38.04mm in diameter was attached by a thin vertical rod 
1.5mm in diameter to a force transducer (4). This, in turn, was fixed to the lower end 
of a vertical rod (2) supported by two P.T.F.E. rollers (3) on the horizontal bar. The 
sphere was therefore subjected to the simple harmonic motion of the horizontal bar. 
Provisions were made to change both the amplitude and the frequency of the oscilla- 
tions. 

The sphere was fully submerged in a liquid filling a cubic container of inner edge 
375 mm, so that the wall effect on a t  least the steady-motion drag was almost negligible, 
as demonstrated experimentally by McNown & Newlin (1951). The liquids used were 
water (p, = 0.997 g/cm3, v = 0.918 mm2/s, at a temperature of 23.8 "C) and Shell 
diesel oil (pf = 0.833 g/cm3, v = 3.68 mm2/s, a t  a temperature of 23-0 "C). 

The force transducer was made of three semicircular leaves of Perspex stuck 
together and spaced 120" apart. Three strain gauges (Micro Measurements, 120i2, 
EA-06-125BT-120) were stuck on the inner side and three more on the outer side of 
the leaves. Each set of three, joined in series, formed one of two adjacent sides of a 
Wheatstone bridge, which was excited by a 5 V  d.c. signal derived from a Hewlett- 
Packard (77088) recorder system. The frequency response of the recorder was 
0-150Hz. A Disa (55D26) signal conditioner was also used for the purpose of filtering 
out undesirable frequencies introduced into the signal by the measuring system. 

Because of its geometry the transducer, in addition to  measuring axial tensile 
and compressive forces, was also sensitive to lateral forces on the sphere. This was 
apparent, as will be seen below, in the force records obtained. 

Before the experiments were started some preliminary tests had to be carried out 
on the system. The first was the calibration of the force transducer. The load and 
extension showed a linear relationship. The slope was found by the least-squares 
method to be k = 6897N/m. The load and the movement of the stylus from its 
neutral position also showed a linear relationship. The slope was found by the least- 
squares method to  be u = 0-0128N/mm. 

A record of the vertical oscillations of the system in air was obtained and showed 
the natural frequency of longitudinal oscillations of the system to be about 101 Hz. 
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1 

FIGURX 1. The apparatus. (1)  Horizontal bar. (2) Vertical rod. (3) P.T.F.E. rollers. (4) Force 
transducer. (5) Microswitch. (6) Motor. (7)  Gear box. (8) Flexible shaft. 

From this, the effective mass Me,, of the transducer and the sphere combined was 
found to be 17.1 g under the assumption that the system was a simple spring with the 
sphere hanging from it. A similar record of the lateral oscillations of the system was 
obtained and showed the natural frequency of lateral oscillations of the system to be 
about 6 Hz. 

Owing to the natural oscillations of the sphere, the recorder trace obtained in the 
experiments showed some undesirable small amplitude signals (mainly a t  frequencies 
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FIGURE 2. A sample of the force records. A = 40 mm, p = 2.262 rad/s, 
paper speed = 25 mm/s. The liquid used was water. 

of about 6 Hz and 101 Hz) superimposed on the main force record. The frequency 
of the simple harmonic mot.ion in the experiments did not exceed 0-36 Hz, therefore 
all the oscillations above and including 10 Hz were filtered out from the signal, using 
the signal conditioner. (The lowest frequency that could be filtered out by the signal 
conditioner was IOHz.) Lower frequency oscillations, particularly those at  6 Hz, were 
eliminated by a curve-fitting procedure, as explained below. 

When the preliminary tests had been completed and the system was ready, experi- 
ments were carried out to obtain records of the force on the sphere when it moved 
with a simple harmonic motion in the liquids mentioned above. The amplitude A of 
the motion was set to the values 20, 30, 40, 50 and 60 mm and its angular frequency 
p was set to the values 0.566, 1.131, 1.697 and 2*262rad/s. In  each of the runs a 
filtered record was obtained of the force on the sphere, after this had completed a few 
cycles of the motion. In  addition, a microswitch provided a signal on the paper, 
alongside the force record, every time the vertical rod reached its top dead centre. 
This therefore gave a reference point for the displacement of the sphere. A sample 
of these records for A = 40 mm and p = 2.262 rad/s is given in figure 2. 

The Cartesian co-ordinates of points lying on the force records were read at  equal 
intervals of 0.254 mm under a travelling microscope for a complete cycle, taking the 
microswitch signal as the starting point (t = 0). 

On examining the form of the force records, it could be seen, as in figure 2, that apart 
from the small regular ripples the records were of simple harmonic form of the same 
angular frequency p as the motion itself. Figure 2 also shows, as is the case in all the 
other records, that the frequency of the ripples on the force record is about 6 Hz, the 
same as that for the natural lateral oscillations of the sphere. It is quite likely, there- 
fore, that the ripples were caused by these oscillations, which were triggered and 
sustained by the asymmetric flow field around the sphere, as can be seen in figure 7 (a)  
(plate 1) .  In  order to smooth out these small unfiltered ripples on the record curve 
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and to correct for the drift of the zero-amplitude line, the expression 
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b, + b, t + b, sin (p t )  + b, COB (p t )  

was fitted to the readings obtained with the travelling microscope by the least-squares 
method. After obtaining b,, b,, b, and b, for the particular records, the first two terms 
were dropped, and the force on the transducer was taken to be 

f = a(b, sinpt + b, cospt). 

f = a(bi + b$ cos [pt - tan-l (b2/ba)], Re-arranging gives 

so that the force on the transducer was lagging behind the motion (Acospt) by an 
angle of tan-l(b,/b,) radians. In  the present investigations this angle was found to 
vary between 12" and 30". 

3. Theoretical analysis and calculations 
The total extension zt of the transducer could be expressed as 

2, = Z,+Z, 

where zg is the extension due to  the constant force (Meff-m')g,  which always acted 
in the same direction, and z is the extension due to the motion of the sphere in the 
liquid. This means that 

z = f / k ,  

and hence z = (a/k)  (b,  sinpt + b, cospt). (6) 

If y = A cospt +yo (7) 

is the displacement of a reference point on the vertical rod and x is the resulting 
vertical displacement of the centre of the sphere, then 

x = y + z + L  + z, = A cospt + (a/k)  (b, sinpt + b, cospt) + L  + zg + yo, (8) 

where yo and L follow from the co-ordinate system chosen as shown in figure 3. 
The equation of motion of the sphere is 

Me,< 2 = - k(z, + Z) - P + (Me,, - m') 9, 

where F is the instantaneous fluid resistance. As kz, = (Me,, - m') g by definition, this 
equation of motion can be reduced to 

MefrX = - k z - F ,  

F = - Me,,X--f. from which 

Substituting for x and for f in this expression shows that the fluid resistance is 

F = Me,,p2[A cospt + ( a / k )  (b2 sinpt + b, cospt)] - a(b, sinpt + b, cospt), (9) 

in which all the terms are known, and therefore F can be calculated for all the points 
of the cycle. 

It was necessary to assume an empirical expression for F and calculate the valuea 
of the empirical coefficients introduced. This was done in two ways. 



Drag on a sphere in unsteady motion 91 

Vertical rod 

Reference 

Force 
transducer 

Arbitrarv datum line 

X 

L + z + z ,  

I 

(M,fl-m') g 

FIGURE 3. Simplified model of sphere-transducer system. 

Determination of the added-mass and history coeflicients 

First, the method described by Odar & Hamilton was used. Empirical coefficients 
were introduced into the Boussinesq-Basset theoretical expression to make it spplic- 
able to  motions which are not necessarily slow: 

where C, is the steady-motion drag coefficient, C, is the added-mass coefficient and 
Ch is the history coefficient. The term 

X(t  -7) = -p2(A cos [p(t -T)] + (a /k )  sin [p(t -T ) ]  + (a / k )  cos [p(t -T ) ] )  

is the acceleration of the sphere a t  the dummy time t -7. 

Integration under the assumption that t is large gives 

where x' = -p2[A sinpt + (a/k) (b3 sinpt - b, cospt)] 
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is the acceleration a quarter of a cycle before the time t, with 

X = -p2[A cospt + ( a / k )  (b,  sinpt + b, C O S ~ ~ ) ]  

and x = -p[A sinpt + (a /k )  (b,  cospt - b, sinpt)]. 

The empirical steady-motion drag coefficient Cd was obtained from the experimental 
data coIlected by Schiller & Nauman (1933), Lapple & Shepherd (1940) and Davies 
(1945). In  order to  facilitate the use of the data in the present investigations, a 
seventh-degree polynomial in log Re of the form 

log C, = a, +a, log Re + a,(log Re), + . . . +%(log Re)' (11) 

was fitted to  log Cay where 

CX, = 1.429, a, = - 0.8856, a, = 8.081 x a, = 1.085 x 

a4 = - 3.90 x lo-,, a5 = 4-31 x a, = 2.55 x a7 = -4.63 x lod. 

This empirical fit was applicable in the range 10-2 < Re < 105, where Re = Vd/v. 
The steady-motion drag term in (10) was therefore known. There were still two 

unknowns left, C, and ch, with only one equation available. The problem was solved 
by the method introduced by Odar & Hamilton. C, was obtained a t  points in the 
cycle where the history term became zero, and similarly Ch was obtained at  points 
in the cycle where the added-mass term became zero. 

It could be shown from theoretical considerations (cf. Odar & Hamilton) or by 
dimensional analysis that C, = fi(Re, An) and ch = f,(Re, An), where in this case 
Re = Ikld/v, the Reynolds number, and An = 12]d/(k)z, the acceleration number, 
which is a measure of the ratio of the local acceleration term to  the convective 
acceleration term in the Navier-Stokes equations. (An has been used by some workers 
in its reciprocal form.) 

Therefore for each value of C,,, and ch obtained, the corresponding values of Re and 
An were also calculated. 

Determination of the unsteady-motion drag coeficient 
In the second method the concept introduced by Lunnon was used. This was simply 
to  represent the fluid resistance by a single empirical term 

F = C x $pf1212 x &7d2, 

where C = f,(Re, An) is the unsteady-motion drag coefficient. The Froude number was 
not important in this case, and the geometry factor did not apply, as only one type of 
object, a sphere, was used. 

From the experimental data the value of C could be calculated for any point in the 
cycle in any of the tests. This was carried out for selected values of An. 

The relationship C = f,(Re, An) was then expressed, using the available data, in 
the empirical form 

where Cd is the steady-motion drag coefficient, which is a function of Re only, given 
by ( I l ) ,  andp = 1-2 

The above relationship was found to give the best correlation, with the smallest 
standard deviation, after a trial of several other empirical forms. 

(12) C = (An+ l)bCd, . 

0.03, determined by the least-squares method. 
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FIGURE 4. (a) History and ( b )  added-mass coefficient W.Y. Reynolds number. 0, An = 0; 
a, An = 0.89; 0, An = 1.08; 0 ,  An = 1.35; + , A n  = 1-78; A, An = 2.70. 

4. Presentation and discussion of the results 
The added-mass coefficient C, and the history coefficient C, were calculated at  

certain instants in the cycle, so that the corresponding values of An were almost 
constant for a particular amplitude A .  This made it possible to plot C, and ch against 
Re for constant values of An, as shown in figure 4. 

It can be seen from this figure that in the present range of the Reynolds number 
(lo2 < Re < lo4) there is a great degree of scatter in the plots. This can be ascribed 
to the form of (lo), from which C, and ch were calculated, which tended to magnify 
experimental errors. 

The unsteady-motion drag coefficient C was also plotted against the Reynolds 
number for constant values of the acceleration number as shown in figure 5. It can be 
seen clearly that C correlates well with both Re and An, increasing with the latter. A 
line showing the steady-motion drag coefficient C,(An = 0) is also included, and fits 
in well with the rest of the points, adding support to the present results. 

A correlated form of the data for C as a function of both An and Re was obtained by 
statistical methods: 

c = (A%+ 1)1'2*0.03cd. 

A graph of C / ( A n +  1)1'2 against Re was plotted and is shown in figure 6, in which 
values of C, (points at A n  = 0) are again shown as a line. 

As will be seen from this figure, this type of empirical expression gives a reasonably 
good correlation except at  the lower Reynolds numbers. However, most of the present 
experimental points lie above the line which represents the steady-motion drag 
Coefficient C,. This might be due to the additional resistance offered by the supporting 
rod, though owing to its small diameter this is likely to be only a minor factor. The 
other likely contributory factor is the eddy motion generated in the liquid by the 
oscillatory motion of the sphere and the shedding of vortices. A sphere moving through 
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FIGURE 5.  Total resistance coefficient v8. Reynolds number. 0, An = 0.1; A, An = 0.2; 0, 
An = 0.5; 0 ,  An = 1.0; A, An = 2.2; e, An = 5.2; 0, An = 10.5; -, steady-motion drag 
curve, An = 0. 

I 

FIGURE 6. Correlated total resistance coefficient v8. Reynolds 
number. See figure 5 for notation. 

such a disturbed liquid is likely to encounter greater resistance than when moving 
through still liquid, as is the case when the steady-motion drag coefficient is determined. 

In  order to get a picture of the flow pattern in the tank, a photographic flow- 
visualization study was undertaken. Aluminium particles were used as tracers, and 
the central plane of the tank, which contained the sphere, was illuminated by a 
parallel beam of light through a vertical slit 4 mm wide. The liquid used was water, 
and the amplitude and frequency of the oscillations of the sphere were varied over 
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the ranges covered for the drag measurements. Two photographs are shown in figure 
7 (plate 1). The first, corresponding to the lowest Reynolds number in the range 
(Remax = 610, where the suffix ‘max’ indicates the maximum value in the cycle), 
shows asymmetrical flow patterns, which could be produced by the shedding of 
vortex rings or vortex loops. Such loops have been observed by Achenbach (1974) 
in the wake of a sphere in steady motion. The second photograph, corresponding to 
the highest Reynolds number in the range (Re,, = 4870), shows an established flow 
pattern in the tank. In  both photogaphs the wake can be seen to have the form of 
jet flow, issuing at either end of the stroke of the sphere. This wake appears to be 
laminar in figure 7 (a )  and turbulent in figure 7 ( b ) .  It appears from the photographic 
study that the effect of the jet wake on the flow pattern in the tank increases with 
Remax and leads to the gradual development of the two vortex rings seen in figure 7 (b ) .  

This limited flow-visualization study was made in order to throw some light on the 
nature of the flow pattern around an oscillating sphere. In  view of the importance of 
the subject a much more comprehensive investigation would be justified. 

In  their work on the motion of spheres in an oscillating flow field, Baird, Senior & 
Thompson (1967) have found that, for values of the non-dimensional group 

( P d l V  ( A l 4 Q  
less than 0.07, the spheres did not suffer additional retardation due to the oscillatory 
nature of the motion relative to the retardation predicted by the quasi-steady equation 
of motion. A similar conclusion was reached by Schoneborn (1975). In  the present 
work the range of the dimensionless number mentioned above is 0.005-0.03. It 
therefore follows that the experimental results on drag presented here should also be 
applicable to other types of motions. 

5. Conclusions 
It can be seen from this study that a t  moderate Reynolds numbers ( lo2 < Re < 104) 

the average values of the added-mass coefficient and the history coefficient for spheres 
are close to their theoretical values of 0.5 and 6 respectively, as given by Boussinesq 
and Basset for slow motions. 

The unsteady-motion drag coefficient C seems to correlate well with both the 
Reynolds number and the acceleration number. It decreases with the acceleration 
number, reducing in the limit of zero acceleration to the steady-motion drag co- 
efficient C,, as expected. This led to the formulation of the empirical expression for 
C in terms of An, C, and Re given in (1 2). 

The authors wish to thank Messrs J. Whiter, A. Thurston, H. Gray and A. Byrne 
for constructing the apparatus, and Mrs TI. Harris for typing this paper. 
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Plate 1 

(h)  
FIGURE 7 .  The floxv pattern i n  the tank. ( a )  A = 30mm, p = 0.09Hz:, Re,,,,, = 610, exposure 

t,irnc = 10s. (6) A = 60 mm, p = 0.3fi H x ,  I~P,,,, = 4870, exposure time = 1s. 

KARANI+’ILTAN AND XOTAS (Fucinq 1’. W) 


